Explosive atmospheres

There are systems in place worldwide to classify explosive atmospheres by zones, according to the risk posed by explosive gas ("G") or dust ("D")

Classification of explosive atmospheres according to CENELEC and IEC
The following standards define areas according to the presence
of gas or dust in the atmosphere:
IEC/EN 60079-10-1 Gas
IEC/EN 60079-10-2 Dust

Standard IEC 60079-0 EN 60079-0			Installation Zone acc. to IEC 60079-10-x EN 60079-10-x	ATEX Directive 94/9/EC		Main motor protection types
Group	EPL	Protection level	Zones	Equipment group	Equipment category	
(Mines)	Ma	very high	NA	$\begin{aligned} & \text { I } \\ & \text { (Mines) } \end{aligned}$	M1	NA
	Mb	high			M2	
${ }_{\text {(Gas) }}$	Ga	very high	0	${ }^{\text {(Surface) }}$	$1 G$	NA
	Gb	high	1		2 C	Exd/Ex de Exp, Exe
	Gc	enhanced	2		3 G	ExnA
${ }_{\text {(1II }}^{\text {(Dust) }}$	Da	very high	20		1D	NA
	Db	high	21		2 D	Extb IP 65
	Dc	enhanced	22		3 D	Extc P $65 / \mathrm{P} 55$

Marking of equipment protection for gas according to ATEX

Marking of equipment protection for gas according to IEC

To ensure equipment can be safely used in potentially explosive atmospheres, the explosive atmospheres where the equipment is installed must be known. The temperature class of equipment must be compared with the spontaneous

Classification

Marking of temperatures, gas groups and explosive atmospheres

Temperature class	Ignition temp. of gas/ vapor ${ }^{\circ} \mathrm{C}$	Max. permitted temp. of equipment ${ }^{\circ} \mathrm{C}$	Gas examples
T1	>450	450	Hydrogen
T2	> $300<450$	300	Ethanol
т3	>200<300	200	Hydrogen sulfice
T4	$>135<200$	135	Diethy ether
T5	> $100<135$	100	-
T6	$>85<100$	85	Carbon disulife

Selection of products for explosive atmospheres EN Standard and ATEX Directive for gas environments

General information about explosive atmospheres

In explosive atmospheres, it is of the utmost importance to ensure the safe use of electrical apparatus. To this end, many countries have regulations concerning both the design and use of such apparatus. These regulations are becoming increasingly harmonized within the framework of IEC recommendations and European Standards. The hazard may

Flameproof enclosure Ex d and Ex de
The motor enclosure is designed in such a way that no internal explosion can be transmitted to the explosive atmosphere surrounding the motor. The enclosure must withstand, without damage, any pressure levels caused by an internal explosion. The shape, length and gap of joints of part assemblies, at shaft openings, cable entries, etc., shall be designed to allow for throttling and cooling of hot gases escaping outside. The standards emphasize the impact of an explosive atmosphere (for instance, explosion pressure) over constructional requirements of such apparatus.

Work on accessories of enclosure componenets is only permitted using prescribed tools. Cable entries must meet the requirements of this type of protection.

The temperature of the motor's external enclosure shall not exceed the self-ignition temperature of the explosive tmosphere of the installation area during operation. For his reason, rated output depends on this rated maximum temperature for the area in question. The standard temperature class on flame proof motors from ABB is
$\mathrm{T} 4\left(135^{\circ} \mathrm{C}\right)$, other temperature classes as $\mathrm{T} 5\left(100^{\circ} \mathrm{C}\right)$ and T6 $\left(85^{\circ} \mathrm{C}\right)$ are available on request.

No motor device outside the flameproof enclosure (e.g., ventilator) shall be a potential source of sparks, arcs or dangerous overheating

Variants combining two types of protection usually combine d" and "e" protection. The motor is designed with an Ex a flameproof enclosure, while the terminal box features Ex e increased safety protection. Such design combines the superior safety degree of the "d" type of protection with the high electrical connection requirements of increased safety motors.
be due to an explosive atmosphere composed of a mixture of gas, vapors or dusts with air. This section is concerned only with safety in explosive gas atmospheres for which European Standards and IEC recommendations exist.

Alleinschutz - thermistors as sole protection (optiona) Flameproof motors from ABB have been designed to use thermistors as the sole method of protection against overload. This construction, "Alleinschutz", is available as an option, see variant codes.
"Alleinschutz" refers to the protection of a flameproof motor by a protective device which is triggered by thermistors. The hermistors and relays will switch off the motor in case of overheating before the temperature of the motor's external enclosure exceeds the temperature marking stamped on the rating plate.

Each motor ordered with thermistors as sole protection will be tested, with locked rotor, up to the point where the thermistors trigger the relay to turn off the motor. At the triggering temperature, the motor has to be within the certified temperature class limit.

Only approved relays can be used for "Alleinschutz".
Please note that sizes 315 to 450 require special technica solutions, consult ABB.

Dust ignition protection / Protection by enclosures "t" in explosive atmospheres

Combustible dust is hazardous as it can form potentially explosive atmospheres when dispersed in air. Furthermore, layers of combustible dust may ignite and act as an ignition source for an explosive atmosphere. Explosive atmosphere with dust can be found in a variety of industries such as agriculture, chemicals, plastics, food and beverage.

Selection and installation of electrical equipment To ensure equipment can be safely used in explosive atmospheres with dust, it is vital that the following issues are taken into account when selecting product:

1. Type of dust:

- Will a cloud of dust be present around the product or
- will a layer of dust build up on the product and if so, what will be the maximum thickness of the layer between two cleaning/maintenance procedures.

2. Characteristics of the dust:

- Is the dust electrically conductive or non-conductive?

3. Ignition temperature of the dust:

- $T_{\text {cl }}$: Ignition temperature of dust in a "cloud" or
- $\mathrm{T}_{5 \mathrm{~mm}}$: Ignition temperature of a 5 mm dust laye

Selection and installation of the product according to IEC/EN60079 part 14: Electrical installations design, selection and erection. Please see the tables on the pages 12 and 13. Please see the table on page 14.

This protection prevents any explosion of dust because

- The ingress of dust into the motor is prevented by the IP protection, being either IP 55 ("dust protected") or IP 65 ("dust tight").
- The maximum surface temperature outside the motor must not exceed the temperature class for which the motor is certified
- No sparks must occur outside the motor enclosure.

Certification: Ex tb IIIB/C T... ${ }^{\circ} \mathrm{C} \mathrm{Db}$ (for zone 21) motors are certified according to ATEX with an EC type examination certificate and according to the IEC Ex System. Ex tc IIIB/C T... ${ }^{\circ} \mathrm{C}$ Dc (for zone 22) motors are certified according to ATEX with a "voluntary type examination certificate" and according to the IEC Ex System.

The standard surface temperature class on dust ignition protection motors from ABB is $\mathrm{T} 125^{\circ} \mathrm{C}$, other temperature classes are available on request.

CE Conformity marking

Equipment protection for dust
Ex tc IIIC $\mathrm{T} 125^{\circ} \mathrm{C}$ Dc
Protection
Protection
Equipment group III
for conductive dust
Temperature class

CE 0081 II 2 D

\qquad
Equipment protection level $=$ level c for dust

CE marking
Identification
of the notified body
responsible for the
identification number of LCIE
The European Commission mark for Ex products

Equipment group: II for surface industry

Equipment category: 2D for dust
environment demanding a high level of protection

Marking of equipment protection for dust according to IEC

		$\begin{aligned} & \mathrm{T}_{\mathrm{T}_{\text {cL }}} \text { (cloud) } \end{aligned}$	$\begin{array}{\|l\|} \mathrm{T}_{{ }_{\mathrm{C} \text { Sm }}}(\text { layer } \end{array}$	Surface temperature provided that dust layer below 5 mm
Food/Feeder industry	Wheat	350	270	195
	Barle, corm	380	280	205
	Sugar	350	430	233
Natural materials	Wood	330	280	205
	Charcoal	520	230	195
	Hard coal	460	240	165
Chemicals	PVC	450	330	255
	Synth. rubber	470	220	145
	Sufur	240	250	160

Dust subdivisions

Dust subdivisions
IIIA combustible fllings III non-conductive dust IICC conductive dust

Selection of products for explosive atmospheres
EN Standard and ATEX Directive for dust environments

EN 60079-14: Installations design, selection and erection

